80 research outputs found

    Wireless Command-and-Control of UAV-Based Imaging LANs

    Get PDF
    Dual airborne imaging system networks were operated using a wireless line-of-sight telemetry system developed as part of a 2002 unmanned aerial vehicle (UAV) imaging mission over the USA s largest coffee plantation on the Hawaiian island of Kauai. A primary mission objective was the evaluation of commercial-off-the-shelf (COTS) 802.11b wireless technology for reduction of payload telemetry costs associated with UAV remote sensing missions. Predeployment tests with a conventional aircraft demonstrated successful wireless broadband connectivity between a rapidly moving airborne imaging local area network (LAN) and a fixed ground station LAN. Subsequently, two separate LANs with imaging payloads, packaged in exterior-mounted pressure pods attached to the underwing of NASA's Pathfinder-Plus UAV, were operated wirelessly by ground-based LANs over independent Ethernet bridges. Digital images were downlinked from the solar-powered aircraft at data rates of 2-6 megabits per second (Mbps) over a range of 6.5 9.5 km. An integrated wide area network enabled payload monitoring and control through the Internet from a range of ca. 4000 km during parts of the mission. The recent advent of 802.11g technology is expected to boost the system data rate by about a factor of five

    Joint localization of pursuit quadcopters and target using monocular cues

    Get PDF
    Pursuit robots (autonomous robots tasked with tracking and pursuing a moving target) require accurate tracking of the target's position over time. One possibly effective pursuit platform is a quadcopter equipped with basic sensors and a monocular camera. However, combined noise of the quadcopter's sensors causes large disturbances of target's 3D position estimate. To solve this problem, in this paper, we propose a novel method for joint localization of a quadcopter pursuer with a monocular camera and an arbitrary target. Our method localizes both the pursuer and target with respect to a common reference frame. The joint localization method fuses the quadcopter's kinematics and the target's dynamics in a joint state space model. We show that predicting and correcting pursuer and target trajectories simultaneously produces better results than standard approaches to estimating relative target trajectories in a 3D coordinate system. Our method also comprises a computationally efficient visual tracking method capable of redetecting a temporarily lost target. The efficiency of the proposed method is demonstrated by a series of experiments with a real quadcopter pursuing a human. The results show that the visual tracker can deal effectively with target occlusions and that joint localization outperforms standard localization methods

    Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species

    Get PDF
    BACKGROUND: Canopy structure, which can be defined as the sum of the sizes, shapes and relative placements of the tree crowns in a forest stand, is central to all aspects of forest ecology. But there is no accepted method for deriving canopy structure from the sizes, species and biomechanical properties of the individual trees in a stand. Any such method must capture the fact that trees are highly plastic in their growth, forming tessellating crown shapes that fill all or most of the canopy space. METHODOLOGY/PRINCIPAL FINDINGS: We introduce a new, simple and rapidly-implemented model--the Ideal Tree Distribution, ITD--with tree form (height allometry and crown shape), growth plasticity, and space-filling, at its core. The ITD predicts the canopy status (in or out of canopy), crown depth, and total and exposed crown area of the trees in a stand, given their species, sizes and potential crown shapes. We use maximum likelihood methods, in conjunction with data from over 100,000 trees taken from forests across the coterminous US, to estimate ITD model parameters for 250 North American tree species. With only two free parameters per species--one aggregate parameter to describe crown shape, and one parameter to set the so-called depth bias--the model captures between-species patterns in average canopy status, crown radius, and crown depth, and within-species means of these metrics vs stem diameter. The model also predicts much of the variation in these metrics for a tree of a given species and size, resulting solely from deterministic responses to variation in stand structure. CONCLUSIONS/SIGNIFICANCE: This new model, with parameters for US tree species, opens up new possibilities for understanding and modeling forest dynamics at local and regional scales, and may provide a new way to interpret remote sensing data of forest canopies, including LIDAR and aerial photography

    Internet of Things in Agricultural Innovation and Security

    Get PDF
    The agricultural Internet of Things (Ag-IoT) paradigm has tremendous potential in transparent integration of underground soil sensing, farm machinery, and sensor-guided irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. The aim of the IoT in agricultural innovation and security chapter is to present agricultural IoT research and paradigm to promote sustainable production of safe, healthy, and profitable crop and animal agricultural products. This chapter covers the IoT platform to test optimized management strategies, engage farmer and industry groups, and investigate new and traditional technology drivers that will enhance resilience of the farmers to the socio-environmental changes. A review of state-of-the-art communication architectures and underlying sensing technologies and communication mechanisms is presented with coverage of recent advances in the theory and applications of wireless underground communications. Major challenges in Ag-IoT design and implementation are also discussed

    New handbook for standardised measurement of plant functional traits worldwide

    Full text link

    Atmospheric Correction of Aisa Measurements Over the Florida Keys Optically Shallow Waters: Challenges in Radiometric Calibration and Aerosol Selection

    No full text
    An Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imager was deployed on a manned aircraft flown at 1305-m altitude to collect data over optically shallow waters in the Florida Keys with the ultimate goal of mapping water quality and benthic habitats. As a first step, we developed a practical atmospheric correction (AC) approach to derive surface remote-sensing reflectance ((Rrs) from AISA measurements using radiative transfer simulations and constraints obtained from field spectral Rrs measurements. Unlike previously published method, the AC approach removes the surface Fresnel reflection and accounts for aircraft altitude and nonzero near-infrared (NIR) reflectance through iteration over the pre-established look-up tables (LUTs) based on MODTRAN calculations. Simulations and comparison with concurrent in situRrs measurements show the feasibility of the approach in deriving surface Rrs with acceptable uncertainties. The possibility of errors in the radiometric calibration of AISA is demonstrated, although a definitive assessment cannot be made due to lack of enough concurrent in situ measurements. The need for noise reduction and the difficulty in carrying out a vicarious calibration are also discussed to help advance the design of future AISA missions

    Community Metabolism in Shallow Coral Reef and Seagrass Ecosystems, Lower Florida Keys

    No full text
    Diurnal variation of net community production (NEP) and net community calcification (NEC) were measured in coral reef and seagrass biomes during October 2012 in the lower Florida Keys using a mesocosm enclosure and the oxygen gradient flux technique. Seagrass and coral reef sites showed diurnal variations of NEP and NEC, with positive values at near-seafloor light levels \u3e100-300 μ Einstein m-2 s-1. During daylight hours, we detected an average NEP of 12.3 and 8.6 mmol O2 m-2 h-1 at the seagrass and coral reef site, respectively. At night, NEP at the seagrass site was relatively constant, while on the coral reef, net respiration was highest immediately after dusk and decreased during the rest of the night. At the seagrass site, NEC values ranged from 0.20 g CaCO3 m-2 h-1 during daylight to-0.15 g CaCO3 m-2 h-1 at night, and from 0.17 to-0.10 g CaCO3 m-2 h-1 at the coral reef site. There were no significant differences in pH and aragonite saturation states (Oar) between the seagrass and coral reef sites. Decrease in light levels during thunderstorms significantly decreased NEP, transforming the system from net autotrophic to net heterotrophic
    corecore